EconPapers    
Economics at your fingertips  
 

LAceP: Lysine Acetylation Site Prediction Using Logistic Regression Classifiers

Ting Hou, Guangyong Zheng, Pingyu Zhang, Jia Jia, Jing Li, Lu Xie, Chaochun Wei and Yixue Li

PLOS ONE, 2014, vol. 9, issue 2, 1-7

Abstract: Background: Lysine acetylation is a crucial type of protein post-translational modification, which is involved in many important cellular processes and serious diseases. However, identification of protein acetylated sites through traditional experiment methods is time-consuming and laborious. Those methods are not suitable to identify a large number of acetylated sites quickly. Therefore, computational methods are still very valuable to accelerate lysine acetylated site finding. Result: In this study, many biological characteristics of acetylated sites have been investigated, such as the amino acid sequence around the acetylated sites, the physicochemical property of the amino acids and the transition probability of adjacent amino acids. A logistic regression method was then utilized to integrate these information for generating a novel lysine acetylation prediction system named LAceP. When compared with existing methods, LAceP overwhelms most of state-of-the-art methods. Especially, LAceP has a more balanced prediction capability for positive and negative datasets. Conclusion: LAceP can integrate different biological features to predict lysine acetylation with high accuracy. An online web server is freely available at http://www.scbit.org/iPTM/.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089575 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89575&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0089575

DOI: 10.1371/journal.pone.0089575

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0089575