EconPapers    
Economics at your fingertips  
 

A Rule-Based Prognostic Model for Type 1 Diabetes by Identifying and Synthesizing Baseline Profile Patterns

Ying Lin, Xiaoning Qian, Jeffrey Krischer, Kendra Vehik, Hye-Seung Lee and Shuai Huang

PLOS ONE, 2014, vol. 9, issue 6, 1-10

Abstract: Objective: To identify the risk-predictive baseline profile patterns of demographic, genetic, immunologic, and metabolic markers and synthesize these patterns for risk prediction. Research Design and Methods: RuleFit is used to identify the risk-predictive baseline profile patterns of demographic, immunologic, and metabolic markers, using 356 subjects who were randomized into the control arm of the prospective Diabetes Prevention Trial-Type 1 (DPT-1) study. A novel latent trait model is developed to synthesize these baseline profile patterns for disease risk prediction. The primary outcome was Type 1 Diabetes (T1D) onset. Results: We identified ten baseline profile patterns that were significantly predictive to the disease onset. Using these ten baseline profile patterns, a risk prediction model was built based on the latent trait model, which produced superior prediction performance over existing risk score models for T1D. Conclusion: Our results demonstrated that the underlying disease progression process of T1D can be detected through some risk-predictive patterns of demographic, immunologic, and metabolic markers. A synthesis of these patterns provided accurate prediction of disease onset, leading to more cost-effective design of prevention trials of T1D in the future.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091095 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 91095&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0091095

DOI: 10.1371/journal.pone.0091095

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0091095