A Cognitive Model for Aggregating People's Rankings
Michael D Lee,
Mark Steyvers and
Brent Miller
PLOS ONE, 2014, vol. 9, issue 5, 1-9
Abstract:
We develop a cognitive modeling approach, motivated by classic theories of knowledge representation and judgment from psychology, for combining people's rankings of items. The model makes simple assumptions about how individual differences in knowledge lead to observed ranking data in behavioral tasks. We implement the cognitive model as a Bayesian graphical model, and use computational sampling to infer an aggregate ranking and measures of the individual expertise. Applications of the model to 23 data sets, dealing with general knowledge and prediction tasks, show that the model performs well in producing an aggregate ranking that is often close to the ground truth and, as in the “wisdom of the crowd” effect, usually performs better than most of individuals. We also present some evidence that the model outperforms the traditional statistical Borda count method, and that the model is able to infer people's relative expertise surprisingly well without knowing the ground truth. We discuss the advantages of the cognitive modeling approach to combining ranking data, and in wisdom of the crowd research generally, as well as highlighting a number of potential directions for future model development.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096431 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96431&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0096431
DOI: 10.1371/journal.pone.0096431
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).