EconPapers    
Economics at your fingertips  
 

A New Model for Predicting Non-Sentinel Lymph Node Status in Chinese Sentinel Lymph Node Positive Breast Cancer Patients

Miao Liu, Shu Wang, Lu Pan, Deqi Yang, Fei Xie, Peng Liu, Jiajia Guo, Jiaqing Zhang and Bo Zhou

PLOS ONE, 2014, vol. 9, issue 8, 1-13

Abstract: Background: Our goal is to validate the Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram and Stanford Online Calculator (SOC) for predicting non-sentinel lymph node (NSLN) metastasis in Chinese patients, and develop a new model for better prediction of NSLN metastasis. Methods: The MSKCC nomogram and SOC were used to calculate the probability of NSLN metastasis in 120 breast cancer patients. Univariate and multivariate analyses were performed to evaluate the relationship between NSLN metastasis and clinicopathologic factors, using the medical records of the first 80 breast cancer patients. A new model predicting NSLN metastasis was developed from the 80 patients. Results: The MSKCC and SOC predicted NSLN metastasis in a series of 120 patients with an area under the receiver operating characteristic curve (AUC) of 0.688 and 0.734, respectively. For predicted probability cut-off points of 10%, the false-negative (FN) rates of MSKCC and SOC were both 4.4%, and the negative predictive value (NPV) 75.0% and 90.0%, respectively. Tumor size, Kiss-1 expression in positive SLN and size of SLN metastasis were independently associated with NSLN metastasis (p

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104117 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04117&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0104117

DOI: 10.1371/journal.pone.0104117

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0104117