EconPapers    
Economics at your fingertips  
 

Optimal Iodine Staining of Cardiac Tissue for X-Ray Computed Tomography

Timothy D Butters, Simon J Castro, Tristan Lowe, Yanmin Zhang, Ming Lei, Philip J Withers and Henggui Zhang

PLOS ONE, 2014, vol. 9, issue 8, 1-6

Abstract: X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide (), has been used in several biological studies to augment the use of XCT scanning. Recently was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6–7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105552 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05552&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0105552

DOI: 10.1371/journal.pone.0105552

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0105552