EconPapers    
Economics at your fingertips  
 

Walking on a User Similarity Network towards Personalized Recommendations

Mingxin Gan

PLOS ONE, 2014, vol. 9, issue 12, 1-27

Abstract: Personalized recommender systems have been receiving more and more attention in addressing the serious problem of information overload accompanying the rapid evolution of the world-wide-web. Although traditional collaborative filtering approaches based on similarities between users have achieved remarkable success, it has been shown that the existence of popular objects may adversely influence the correct scoring of candidate objects, which lead to unreasonable recommendation results. Meanwhile, recent advances have demonstrated that approaches based on diffusion and random walk processes exhibit superior performance over collaborative filtering methods in both the recommendation accuracy and diversity. Building on these results, we adopt three strategies (power-law adjustment, nearest neighbor, and threshold filtration) to adjust a user similarity network from user similarity scores calculated on historical data, and then propose a random walk with restart model on the constructed network to achieve personalized recommendations. We perform cross-validation experiments on two real data sets (MovieLens and Netflix) and compare the performance of our method against the existing state-of-the-art methods. Results show that our method outperforms existing methods in not only recommendation accuracy and diversity, but also retrieval performance.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114662 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14662&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0114662

DOI: 10.1371/journal.pone.0114662

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0114662