EconPapers    
Economics at your fingertips  
 

Analysis of the Involvement of Different Ceramide Variants in the Response to Hydroxyurea Stress in Baker's Yeast

Po-Wei Chen, Luis L Fonseca, Yusuf A Hannun and Eberhard O Voit

PLOS ONE, 2016, vol. 11, issue 1, 1-20

Abstract: Sphingolipids have been identified as important signaling compounds in stress responses. However, it is not always clear how different sphingolipid profiles are achieved in a particular stress situation. Here we propose a detailed mass action model, containing 42 dependent variables and 137 reactions, that offers explanations of the roles of variant ceramides species, which differ in the lengths of their fatty acyl chains and their saturation state, in the response to hydroxyurea stress. The simulations demonstrate that the cells manage to achieve hydroxyurea tolerance through a well-coordinated, differential usage of the variant ceramide species. Moreover, the results suggest that key enzymes have different affinities toward saturated and unsaturated fatty acyl chains, which implies that the saturation state affords the cells with an additional mode of regulation that had not been recognized so far. These conclusions from our computational analysis are yet to be validated experimentally.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146839 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 46839&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0146839

DOI: 10.1371/journal.pone.0146839

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0146839