Optimizing Semantic Pointer Representations for Symbol-Like Processing in Spiking Neural Networks
Jan Gosmann and
Chris Eliasmith
PLOS ONE, 2016, vol. 11, issue 2, 1-18
Abstract:
The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and architectural elements needed to account for cognitive functions. By means of the Neural Engineering Framework (NEF) this proposal can be realized in a spiking neural network. However, in any such network each SPA transformation will accumulate noise. By increasing the accuracy of common SPA operations, the overall network performance can be increased considerably. As well, the representations in such networks present a trade-off between being able to represent all possible values and being only able to represent the most likely values, but with high accuracy. We derive a heuristic to find the near-optimal point in this trade-off. This allows us to improve the accuracy of common SPA operations by up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient use of both traditional and neuromorphic hardware, which we demonstrate here.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149928 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49928&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0149928
DOI: 10.1371/journal.pone.0149928
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().