Intermediate-Range Migration Furnishes a Narrow Margin of Efficiency in the Two-Strategy Competition
Yanling Zhang,
Qi Su and
Changyin Sun
PLOS ONE, 2016, vol. 11, issue 5, 1-16
Abstract:
It is well-known that the effects of spatial selection on the two-strategy competition can be quantified by the structural coefficient σ under weak selection. We here calculate the accurate value of σ in group-structured populations of any finite size. In previous similar models, the large population size has been explicitly required for obtaining σ, and here we analyze quantitatively how large the population should be. Unlike previous models which have only involved the influences of the longest and the shortest migration rang on σ, we consider all migration ranges together. The new phenomena are that an intermediate range maximizes σ for medium migration probabilities which are of the tiny minority and the maximum value is slightly larger than those for other ranges. Furthermore, we find the ways that migration or mutation changes σ can vary significantly through determining analytically how the high-frequency steady states (distributions of either strategy over all groups) impact the expression of σ obtained before. Our findings can be directly used to resolve the dilemma of cooperation and provide a more intuitive understanding of spatial selection.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155787 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 55787&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0155787
DOI: 10.1371/journal.pone.0155787
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().