Predicting Fluctuating Rates of Hospitalizations in Relation to Influenza Epidemics and Meteorological Factors
Radia Spiga,
Mireille Batton-Hubert and
Marianne Sarazin
PLOS ONE, 2016, vol. 11, issue 6, 1-14
Abstract:
Introduction: In France, rates of hospital admissions increase at the peaks of influenza epidemics. Predicting influenza-associated hospitalizations could help to anticipate increased hospital activity. The purpose of this study is to identify predictors of influenza epidemics through the analysis of meteorological data, and medical data provided by general practitioners. Methods: Historical data were collected from Meteo France, the Sentinelles network and hospitals’ information systems for a period of 8 years (2007–2015). First, connections between meteorological and medical data were estimated with the Pearson correlation coefficient, Principal component analysis and classification methods (Ward and k-means). Epidemic states of tested weeks were then predicted for each week during a one-year period using linear discriminant analysis. Finally, transition probabilities between epidemic states were calculated with the Markov Chain method. Results: High correlations were found between influenza-associated hospitalizations and the variables: Sentinelles and emergency department admissions, and anti-correlations were found between hospitalizations and each of meteorological factors applying a time lag of: -13, -12 and -32 days respectively for temperature, absolute humidity and solar radiation. Epidemic weeks were predicted accurately with the linear discriminant analysis method; however there were many misclassifications about intermediate and non-epidemic weeks. Transition probability to an epidemic state was 100% when meteorological variables were below: 2°C, 4 g/m3 and 32 W/m2, respectively for temperature, absolute humidity and solar radiation. This probability was 0% when meteorological variables were above: 6°C, 5.8g/m3 and 74W/m2. Conclusion: These results confirm a good correlation between influenza-associated hospitalizations, meteorological factors and general practitioner’s activity, the latter being the strongest predictor of hospital activity.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157492 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57492&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0157492
DOI: 10.1371/journal.pone.0157492
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().