Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion
Xiaoxu Dai,
Minghua Hu,
Wen Tian,
Daoyi Xie and
Bin Hu
PLOS ONE, 2016, vol. 11, issue 6, 1-11
Abstract:
This paper presents a propagation dynamics model for congestion propagation in complex networks of airspace. It investigates the application of an epidemiology model to complex networks by comparing the similarities and differences between congestion propagation and epidemic transmission. The model developed satisfies the constraints of actual motion in airspace, based on the epidemiology model. Exploiting the constraint that the evolution of congestion cluster in the airspace is always dynamic and heterogeneous, the SIR epidemiology model (one of the classical models in epidemic spreading) with logistic increase is applied to congestion propagation and shown to be more accurate in predicting the evolution of congestion peak than the model based on probability, which is common to predict the congestion propagation. Results from sample data show that the model not only predicts accurately the value and time of congestion peak, but also describes accurately the characteristics of congestion propagation. Then, a numerical study is performed in which it is demonstrated that the structure of the networks have different effects on congestion propagation in airspace. It is shown that in regions with severe congestion, the adjustment of dissipation rate is more significant than propagation rate in controlling the propagation of congestion.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157945 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57945&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0157945
DOI: 10.1371/journal.pone.0157945
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().