Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese
C H Lee,
A Z L Shih,
Y C Woo,
C H Y Fong,
O Y Leung,
E Janus,
B M Y Cheung and
K S L Lam
PLOS ONE, 2016, vol. 11, issue 9, 1-11
Abstract:
Background: The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. Material & Methods: In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25–74 years, at baseline CRISPS-1 (1995–1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010–2012) after 15 years of follow-up. Results: At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713–0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777–0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. Conclusions: HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163424 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63424&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0163424
DOI: 10.1371/journal.pone.0163424
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().