The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes
Boon Kin Teh and
Siew Ann Cheong
PLOS ONE, 2016, vol. 11, issue 10, 1-13
Abstract:
The Global Financial Crisis of 2007-2008 wiped out US$37 trillions across global financial markets, this value is equivalent to the combined GDPs of the United States and the European Union in 2014. The defining moment of this crisis was the failure of Lehman Brothers, which precipitated the October 2008 crash and the Asian Correction (March 2009). Had the Federal Reserve seen these crashes coming, they might have bailed out Lehman Brothers, and prevented the crashes altogether. In this paper, we show that some of these market crashes (like the Asian Correction) can be predicted, if we assume that a large number of adaptive traders employing competing trading strategies. As the number of adherents for some strategies grow, others decline in the constantly changing strategy space. When a strategy group grows into a giant component, trader actions become increasingly correlated and this is reflected in the stock price. The fragmentation of this giant component will leads to a market crash. In this paper, we also derived the mean-field market crash forecast equation based on a model of fusions and fissions in the trading strategy space. By fitting the continuous returns of 20 stocks traded in Singapore Exchange to the market crash forecast equation, we obtain crash predictions ranging from end October 2008 to mid-February 2009, with early warning four to six months prior to the crashes.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163842 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63842&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0163842
DOI: 10.1371/journal.pone.0163842
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().