Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope
Zhilin Feng and
Juntao Fei
PLOS ONE, 2018, vol. 13, issue 1, 1-18
Abstract:
This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189457 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89457&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0189457
DOI: 10.1371/journal.pone.0189457
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().