EconPapers    
Economics at your fingertips  
 

Predicting species emergence in simulated complex pre-biotic networks

Omer Markovitch and Natalio Krasnogor

PLOS ONE, 2018, vol. 13, issue 2, 1-19

Abstract: An intriguing question in evolution is what would happen if one could “replay” life’s tape. Here, we explore the following hypothesis: when replaying the tape, the details (“decorations”) of the outcomes would vary but certain “invariants” might emerge across different life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to test this hypothesis. GARD models the temporal evolution of molecular assemblies, governed by a rates matrix (i.e. network) that biases different molecules’ likelihood of joining or leaving a dynamically growing and splitting assembly. Previous studies have shown the emergence of so called compotypes, i.e., species capable of replication and selection response. Here, we apply networks’ science to ascertain the degree to which invariants emerge across different life-tapes under GARD dynamics and whether one can predict these invariant from the chemistry specification alone (i.e. GARD’s rates network representing initial conditions). We analysed the (complex) rates’ network communities and asked whether communities are related (and how) to the emerging species under GARD’s dynamic, and found that the communities correspond to the species emerging from the simulations. Importantly, we show how to use the set of communities detected to predict species emergence without performing any simulations. The analysis developed here may impact complex systems simulations in general.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192871 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92871&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0192871

DOI: 10.1371/journal.pone.0192871

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0192871