Multi-features taxi destination prediction with frequency domain processing
Lei Zhang,
Guoxing Zhang,
Zhizheng Liang and
Ekene Frank Ozioko
PLOS ONE, 2018, vol. 13, issue 3, 1-22
Abstract:
The traditional taxi prediction methods model the taxi trajectory as a sequence of spatial points. It cannot represent two-dimensional spatial relationships between trajectory points. Therefore, many methods transform the taxi GPS trajectory into a two-dimensional image, and express the spatial correlations by trajectory image. However, the trajectory image may have noise and sparsity according to trajectory data characteristics. So, we import image frequency domain processing to taxi destination prediction to reduce noise and sparsity, then propose multi-features taxi destination prediction with frequency domain processing (MTDP-FD) method. Firstly, we transform the spatial domain trajectory image into frequency-domain representation by fast Fourier transform and reduce the noise of the trajectory images. Convolutional Neural Network (CNN) is adapted to extract the deep features from the processed trajectory image as CNN has a significant learning ability to images. Recurrent Neural Network (RNN) is adapted to predict the taxi destination as multiple hidden layers of RNN can store dependencies between input data to achieve better prediction. The deep features of the trajectory images are combined with trajectory metadata, trajectory data to act as the input to RNN. The experiments based on the taxi trajectory dataset of Porto show that the average distance error of MTDP-FD is reduced by 0.14km compared with the existing methods, and the GTOHL is the best combination of data and features to improve the prediction accuracy.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194629 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 94629&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0194629
DOI: 10.1371/journal.pone.0194629
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().