EconPapers    
Economics at your fingertips  
 

From local uncertainty to global predictions: Making predictions on fractal basins

Asaf Levi, Juan Sabuco, Michael Small and Miguel A F Sanjuán

PLOS ONE, 2018, vol. 13, issue 4, 1-13

Abstract: In nonlinear systems long term dynamics is governed by the attractors present in phase space. The presence of a chaotic saddle gives rise to basins of attraction with fractal boundaries and sometimes even to Wada boundaries. These two phenomena involve extreme difficulties in the prediction of the future state of the system. However, we show here that it is possible to make statistical predictions even if we do not have any previous knowledge of the initial conditions or the time series of the system until it reaches its final state. In this work, we develop a general method to make statistical predictions in systems with fractal basins. In particular, we have applied this new method to the Duffing oscillator for a choice of parameters where the system possesses the Wada property. We have computed the statistical properties of the Duffing oscillator for different phase space resolutions, to obtain information about the global dynamics of the system. The key idea is that the fraction of initial conditions that evolve towards each attractor is scale free—which we illustrate numerically. We have also shown numerically how having partial information about the initial conditions of the system does not improve in general the predictions in the Wada regions.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194926 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 94926&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0194926

DOI: 10.1371/journal.pone.0194926

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0194926