Assessment of accuracy and recognition of three-dimensional computerized forensic craniofacial reconstruction
Geraldo Elias Miranda,
Caroline Wilkinson,
Mark Roughley,
Thiago Leite Beaini and
Rodolfo Francisco Haltenhoff Melani
PLOS ONE, 2018, vol. 13, issue 5, 1-13
Abstract:
Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196770 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96770&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0196770
DOI: 10.1371/journal.pone.0196770
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().