On the design of power gear trains: Insight regarding number of stages and their respective ratios
Harrison L Bartlett,
Brian E Lawson and
Michael Goldfarb
PLOS ONE, 2018, vol. 13, issue 6, 1-13
Abstract:
This paper presents a formulation for selecting the stage ratios and number of stages in a multistage transmission with a given desired total transmission ratio in a manner that maximizes efficiency, maximizes acceleration, or minimizes the mass of the transmission. The formulation is used to highlight several implications for gear train design, including the fact that minimizing rotational inertia and mass are competing objectives with respect to optimal selection of stage ratios, and that both rotational inertia and mass can often be minimized by increasing the total number of stages beyond a minimum realizable number. Additionally, a multistage transmission will generally provide maximum acceleration when the stage ratios increase monotonically from the motor to the load. The transmission will have minimum mass when the stage ratios decrease monotonically. The transmission will also provide maximum efficiency when the corresponding stages employ constant stage ratios. This paper aims to use this optimization formulation to elucidate tradeoffs between various common objectives in gear train design (efficiency, acceleration, and mass).
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198048 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98048&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0198048
DOI: 10.1371/journal.pone.0198048
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().