Construction of an integrated database for hERG blocking small molecules
Tomohiro Sato,
Hitomi Yuki,
Keiji Ogura and
Teruki Honma
PLOS ONE, 2018, vol. 13, issue 7, 1-18
Abstract:
The inhibition of the hERG potassium channel is closely related to the prolonged QT interval, and thus assessing this risk could greatly facilitate the development of therapeutic compounds and the withdrawal of hazardous marketed drugs. The recent increase in SAR information about hERG inhibitors in public databases has led to many successful applications of machine learning techniques to predict hERG inhibition. However, most of these reports constructed their prediction models based on only one SAR database because the differences in the data format and ontology hindered the integration of the databases. In this study, we curated the hERG-related data in ChEMBL, PubChem, GOSTAR, and hERGCentral, and integrated them into the largest database about hERG inhibition by small molecules. Assessment of structural diversity using Murcko frameworks revealed that the integrated database contains more than twice as many chemical scaffolds for hERG inhibitors than any of the individual databases, and covers 18.2% of the Murcko framework-based chemical space occupied by the compounds in ChEMBL. The database provides the most comprehensive information about hERG inhibitors and will be useful to design safer compounds for drug discovery. The database is freely available at http://drugdesign.riken.jp/hERGdb/.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199348 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99348&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0199348
DOI: 10.1371/journal.pone.0199348
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().