EconPapers    
Economics at your fingertips  
 

An improved DBSCAN algorithm based on cell-like P systems with promoters and inhibitors

Yuzhen Zhao, Xiyu Liu and Xiufeng Li

PLOS ONE, 2018, vol. 13, issue 12, 1-17

Abstract: Density-based spatial clustering of applications with noise (DBSCAN) algorithm can find clusters of arbitrary shape, while the noise points can be removed. Membrane computing is a novel research branch of bio-inspired computing, which seeks to discover new computational models/framework from biological cells. The obtained parallel and distributed computing models are usually called P systems. In this work, DBSCAN algorithm is improved by using parallel evolution mechanism and hierarchical membrane structure in cell-like P systems with promoters and inhibitors, where promoters and inhibitors are utilized to regulate parallelism of objects evolution. Experiment results show that the proposed algorithm performs well in big cluster analysis. The time complexity is improved to O(n), in comparison with conventional DBSCAN of O(n2). The results give some hints to improve conventional algorithms by using the hierarchical framework and parallel evolution mechanism in membrane computing models.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200751 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00751&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0200751

DOI: 10.1371/journal.pone.0200751

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0200751