EconPapers    
Economics at your fingertips  
 

Impact of residual covariance structures on genomic prediction ability in multi-environment trials

Boby Mathew, Jens Léon and Mikko J Sillanpää

PLOS ONE, 2018, vol. 13, issue 7, 1-11

Abstract: In plant breeding, one of the main purpose of multi-environment trial (MET) is to assess the intensity of genotype-by-environment (G×E) interactions in order to select high-performing lines of each environment. Most models to analyze such MET data consider only the additive genetic effects and the part of the non-additive genetic effects are confounded with the residual terms and this may lead to the non-negligible residual covariances between the same trait measured at multiple environments. In breeding programs it is also common to have the phenotype information from some environments available and values are missing in some other environments. In this study we focused on two problems: (1) to study the impact of different residual covariance structures on genomic prediction ability using different models to analyze MET data; (2) to compare the ability of different MET analysis models to predict the missing values in a single environment. Our results suggests that, it is important to consider the heterogeneous residual covariance structure for the MET analysis and multivariate mixed model seems to be especially suitable to predict the missing values in a single environment. We also present the prediction abilities based on Bayesian and frequentist approaches with different models using field data sets (maize and rice) having different levels of G×E interactions.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201181 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01181&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0201181

DOI: 10.1371/journal.pone.0201181

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0201181