EconPapers    
Economics at your fingertips  
 

MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance

Francisca Barceló, Rosa Gomila, Ivan de Paul, Xavier Gili, Jaume Segura, Albert Pérez-Montaña, Teresa Jimenez-Marco, Antonia Sampol and José Portugal

PLOS ONE, 2018, vol. 13, issue 8, 1-14

Abstract: Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201793 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01793&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0201793

DOI: 10.1371/journal.pone.0201793

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0201793