Agreement and reliability statistics for shapes
Travis B Smith and
Ning Smith
PLOS ONE, 2018, vol. 13, issue 8, 1-11
Abstract:
We describe a methodology for assessing agreement and reliability among a set of shapes. Motivated by recent studies of the reliability of manually segmented medical images, we focus on shapes composed of rasterized, binary-valued data representing closed geometric regions of interest. The methodology naturally generalizes to N dimensions and other data types, though. We formulate the shape variance, shape correlation and shape intraclass correlation coefficient (ICC) in terms of a simple distance metric, the Manhattan norm, which quantifies the absolute difference between any two shapes. We demonstrate applications of this methodology by working through example shape variance calculations in 1-D, for the analysis of overlapping line segments, and 2-D, for the analysis of overlapping regions. We also report the results of a simulated reliability analysis of manually delineated shape boundaries, and we compare the shape ICC with the more conventional and commonly used area ICC. The proposed shape-sensitive methodology captures all of the variation in the shape measurements, and it provides a more accurate estimate of the measurement reliability than an analysis of only the measured areas.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202087 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 02087&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0202087
DOI: 10.1371/journal.pone.0202087
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().