Novel robust control of a 7-DOF exoskeleton robot
Mehran Rahmani and
Mohammad Habibur Rahman
PLOS ONE, 2018, vol. 13, issue 9, 1-18
Abstract:
This paper proposes a novel robust control method for the control of a 7-DOF exoskeleton robot. The external disturbances and unknown dynamics in the form of friction forces, different upper-limb’s mass, backlash, and input saturation make robot unstable, which prevents the robot from correctly following the defined path. A new fractional sliding mode controller (NFSMC) is designed, which is robust against unknown dynamic and external disturbances. Fractional PID controller (FPID) has high trajectory tracking, but it is not robust against external disturbances. Therefore, by combining NFSMC and FPID controllers, a new compound fractional PID sliding mode controller (NCFPIDSMC) is proposed, which benefits high trajectory tracking of FPID and robustness of NFSMC. The stability of the proposed control method is verified by Lyapunov theory. A random noise is applied in order to confirm the robustness of the proposed control method.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203440 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03440&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203440
DOI: 10.1371/journal.pone.0203440
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().