Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras
Inês Silva,
Matthew Crane,
Pongthep Suwanwaree,
Colin Strine and
Matt Goode
PLOS ONE, 2018, vol. 13, issue 9, 1-20
Abstract:
Home range estimators are a critical component for understanding animal spatial ecology. The choice of home range estimator in spatial ecology studies can significantly influence management and conservation actions, as different methods lead to vastly different interpretations of movement patterns, habitat selection, as well as home range requirements. Reptile studies in particular have struggled to reach a consensus on the appropriate home range estimators to use, and species with cryptic behavior make home range assessment difficult. We applied dynamic Brownian Bridge Movement Models (dBBMMs) to radio-telemetry data from Ophiophagus hannah, a wide-ranging snake species. We used two focal individuals at different life stages (one juvenile male and one adult male) and sought to identify whether the method would accurately represent both their home range and movement patterns. To assess the suitability of dBBMMs, we compared this novel method with traditional home range estimation methods: minimum convex polygons (MCP) and Kernel density estimators (KDE). Both KDE and MCP incorporated higher levels of Type I and Type II errors, which would lead to biases in our understanding of this species space-use and habitat selection. Although these methods identified some general spatial-temporal patterns, dBBMMs were more efficient at detecting movement corridors and accurately representing long-term shelters sites, showing an improvement over methods traditionally favored in reptile studies. The additional flexibility of the dBBMM approach in providing insight into movement patterns can help further improve conservation and management actions. Additionally, our results suggest that dBBMMs may be more widely applicable in studies that rely on VHF telemetry and not limited to studies employing GPS tags.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203449 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03449&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203449
DOI: 10.1371/journal.pone.0203449
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().