Bimodal ankle-foot prosthesis for enhanced standing stability
Sara R Koehler-McNicholas,
Billie C Savvas Slater,
Karl Koester,
Eric A Nickel,
John E Ferguson and
Andrew H Hansen
PLOS ONE, 2018, vol. 13, issue 9, 1-18
Abstract:
Previous work suggests that to restore postural stability for individuals with lower-limb amputation, ankle-foot prostheses should be designed with a flat effective rocker shape for standing. However, most commercially available ankle-foot prostheses are designed with a curved effective rocker shape for walking. To address the demands of both standing and walking, we designed a novel bimodal ankle-foot prosthesis that can accommodate both functional modes using a rigid foot plate and an ankle that can lock and unlock. The primary objective of this study was to determine if the bimodal ankle-foot system could improve various aspects of standing balance (static, dynamic, and functional) and mobility in a group of Veterans with lower-limb amputation (n = 18). Standing balance was assessed while subjects completed a series of tests on a NeuroCom Clinical Research System (NeuroCom, a Division of Natus, Clackamas, OR), including a Sensory Organization Test, a Limits of Stability Test, and a modified Motor Control Test. Few statistically significant differences were observed between the locked and unlocked ankle conditions while subjects completed these tests. However, in the absence of visual feedback, the locked bimodal ankle appeared to improve static balance in a group of experienced lower-limb prosthesis users whose PLUS-M mobility rating was higher than approximately 73% of the sample population used to develop the PLUS-M survey. Given the statistically significant increase in mean equilibrium scores between the unlocked and locked conditions (p = 0.004), future testing of this system should focus on new amputees and lower mobility users (e.g., Medicare Functional Classification Level K1 and K2 prosthesis users). Furthermore, commercial implementation of the bimodal ankle-foot system should include a robust control system that can automatically switch between modes based on the user’s activity.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204512 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04512&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0204512
DOI: 10.1371/journal.pone.0204512
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().