EconPapers    
Economics at your fingertips  
 

Penetration and scattering—Two optical phenomena to consider when applying proximal remote sensing technologies to object classifications

Christian Nansen

PLOS ONE, 2018, vol. 13, issue 10, 1-14

Abstract: Proximal remote sensing is being used across a very wide range of research fields and by scientists, who are often without deep theoretical knowledge optical physics; the author of this article falls squarely in that category! This article highlights two optical phenomena, which may greatly influence the quality and robustness of proximal remote sensing: penetration and scattering. Penetration implies that acquired reflectance signals are associated with both physical and chemical properties of target objects from both the surface and internal tissues/structures. Scattering implies that reflectance signals acquired from one point or object are influenced by scattered radiometric energy from neighboring points or objects. Based on a series of laboratory experiments, penetration and scattering were discussed in the context of “robustness” (repeatability) of hyperspectral reflectance data. High robustness implies that it is possible to control imaging conditions and therefore: 1) obtain very similar radiometric signals from inert objects (objects that do not change) over time, and 2) be able to consistently distinguish objects that are otherwise highly similar in appearance (size, shape, and color) and in terms of biochemical composition. It was demonstrated that robustness of hyperspectral reflectance data (40 spectral bands from 385 to 1024 nm) were significantly influenced by penetration and scattering of radiometric energy. In addition, it was demonstrated that the influence of penetration and scattering varied across the examined spectrum. Characterization of how optical phenomena may affect the robustness of reflectance data is important when using proximal remote sensing technologies as tools used to classify engineering and biological objects.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204579 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04579&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0204579

DOI: 10.1371/journal.pone.0204579

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0204579