EconPapers    
Economics at your fingertips  
 

Receding horizon control strategy for an electric vehicle with dual-motor coupling system in consideration of stochastic vehicle mass

Hongqiang Guo, Jinyong Shangguan, Juan Tang, Qun Sun and Hongting Wu

PLOS ONE, 2018, vol. 13, issue 10, 1-20

Abstract: Additional degrees of freedom existed in dual-motor coupling system bring considerable challenge to the optimal control of electric vehicles. Moreover, the stochastic characteristic of vehicle mass can further increase this challenge. A receding horizon control (RHC) strategy in consideration of stochastic vehicle mass is proposed in this study to respond to this challenge. Aiming at an electric vehicle with dual-motor coupling, a Markov chain is firstly deployed to predict future driving conditions by a formulated state transition probability matrix, based on historical driving cycles in real-world. Then, future required power is predicted by the predicted driving conditions, stochastic vehicle mass and road gradient, where the stochastic vehicle mass is formulated as stochastic variables in different bus stops. Finally, dynamic programming is employed to calculate the optimal vector of the vehicle within the defined prediction horizon, and only the first control values extracted from the optimal control vector are used to execute real-time power distribution control. The simulation results show that the proposed strategy is reasonable and can at least reduce electric consumption by 4.64%, compared with rule-based strategy.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205212 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05212&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0205212

DOI: 10.1371/journal.pone.0205212

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0205212