A multi-agent system for distributed multi-project scheduling with two-stage decomposition
Feifei Li and
Zhe Xu
PLOS ONE, 2018, vol. 13, issue 10, 1-24
Abstract:
A two-stage decomposition approach based on a novel multi-agent system (MAS) is proposed for the distributed resource constrained multi-project scheduling problem (DRCMPSP). In stage one, from the point of view of each local project manager, a forward-backward hybrid genetic algorithm (FBHGA) is developed to generate an initial local schedule with the objective of minimizing individual project makespan. In stage two, from the global perspective of project management office, a sequential game-based negotiation mechanism is employed to eliminate global resource conflicts with the objective of minimizing total tardiness cost (TTC). The proposed approach is tested on 140 benchmark problem instances. According to the computational results, high-quality local project schedules can be obtained by FBHGA in stage one. Furthermore, it is observed that our method is capable of dealing with various complex multi-project instances under different degrees of resource conflicts in reasonable CPU running time. Compared to the existing decentralized methods for DRCMPSP, the proposed approach with sequential game-based negotiation mechanism shows the superiority in producing multi-project schedules with lower TTC, especially for large-size and strong conflicting instances.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205445 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 05445&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0205445
DOI: 10.1371/journal.pone.0205445
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().