Predicting bacterial growth conditions from mRNA and protein abundances
M Umut Caglar,
Adam J Hockenberry and
Claus O Wilke
PLOS ONE, 2018, vol. 13, issue 11, 1-22
Abstract:
Cells respond to changing nutrient availability and external stresses by altering the expression of individual genes. Condition-specific gene expression patterns may thus provide a promising and low-cost route to quantifying the presence of various small molecules, toxins, or species-interactions in natural environments. However, whether gene expression signatures alone can predict individual environmental growth conditions remains an open question. Here, we used machine learning to predict 16 closely-related growth conditions using 155 datasets of E. coli transcript and protein abundances. We show that models are able to discriminate between different environmental features with a relatively high degree of accuracy. We observed a small but significant increase in model accuracy by combining transcriptome and proteome-level data, and we show that measurements from stationary phase cells typically provide less useful information for discriminating between conditions as compared to exponentially growing populations. Nevertheless, with sufficient training data, gene expression measurements from a single species are capable of distinguishing between environmental conditions that are separated by a single environmental variable.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206634 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06634&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0206634
DOI: 10.1371/journal.pone.0206634
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().