Choice modelling with Gaussian processes in the social sciences: A case study of neighbourhood choice in Stockholm
Richard P Mann,
Viktoria Spaiser,
Lina Hedman and
David J T Sumpter
PLOS ONE, 2018, vol. 13, issue 11, 1-20
Abstract:
We present a non-parametric extension of the conditional logit model, using Gaussian process priors. The conditional logit model is used in quantitative social science for inferring interaction effects between personal features and choice characteristics from observations of individual multinomial decisions, such as where to live, which car to buy or which school to choose. The classic, parametric model presupposes a latent utility function that is a linear combination of choice characteristics and their interactions with personal features. This imposes strong and unrealistic constraints on the form of individuals’ preferences. Extensions using non-linear basis functions derived from the original features can ameliorate this problem but at the cost of high model complexity and increased reliance on the user in model specification. In this paper we develop a non-parametric conditional logit model based on Gaussian process logit models. We demonstrate its application on housing choice data from over 50,000 moving households from the Stockholm area over a two year period to reveal complex homophilic patterns in income, ethnicity and parental status.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206687 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06687&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0206687
DOI: 10.1371/journal.pone.0206687
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().