EconPapers    
Economics at your fingertips  
 

A gradient-based, GPU-accelerated, high-precision contour-segmentation algorithm with application to cell membrane fluctuation spectroscopy

Michael Mell and Francisco Monroy

PLOS ONE, 2018, vol. 13, issue 12, 1-26

Abstract: We present a novel intensity-gradient based algorithm specifically designed for nanometer-segmentation of cell membrane contours obtained with high-resolution optical microscopy combined with high-velocity digital imaging. The algorithm relies on the image oversampling performance and computational power of graphical processing units (GPUs). Both, synthetic and experimental data are used to quantify the sub-pixel precision of the algorithm, whose analytic performance results comparatively higher than in previous methods. Results from the synthetic data indicate that the spatial precision of the presented algorithm is only limited by the signal-to-noise ratio (SNR) of the contour image. We emphasize on the application of the new algorithm to membrane fluctuations (flickering) in eukaryotic cells, bacteria and giant vesicle models. The method shows promising applicability in several fields of cellular biology and medical imaging for nanometer-precise boundary-determination and mechanical fingerprinting of cellular membranes in optical microscopy images. Our implementation of this high-precision flicker spectroscopy contour tracking algorithm (HiPFSTA) is provided as open-source at www.github.com/michaelmell/hipfsta.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207376 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07376&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0207376

DOI: 10.1371/journal.pone.0207376

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0207376