EconPapers    
Economics at your fingertips  
 

A deep learning model for the detection of both advanced and early glaucoma using fundus photography

Jin Mo Ahn, Sangsoo Kim, Kwang-Sung Ahn, Sung-Hoon Cho, Kwan Bok Lee and Ungsoo Samuel Kim

PLOS ONE, 2018, vol. 13, issue 11, 1-8

Abstract: Purpose: To build a deep learning model to diagnose glaucoma using fundus photography. Design: Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786 normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained by fundus photography. Method: The whole dataset of 1,542 images were split into 754 training, 324 validation and 464 test datasets. These datasets were used to construct simple logistic classification and convolutional neural network using Tensorflow. The same datasets were used to fine tune pre-trained GoogleNet Inception v3 model. Results: The simple logistic classification model showed a training accuracy of 82.9%, validation accuracy of 79.9% and test accuracy of 77.2%. Convolutional neural network achieved accuracy and area under the receiver operating characteristic curve (AUROC) of 92.2% and 0.98 on the training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94 on the test data. Transfer-learned GoogleNet Inception v3 model achieved accuracy and AUROC of 99.7% and 0.99 on training data, 87.7% and 0.95 on validation data, and 84.5% and 0.93 on test data. Conclusion: Both advanced and early glaucoma could be correctly detected via machine learning, using only fundus photographs. Our new model that is trained using convolutional neural network is more efficient for the diagnosis of early glaucoma than previously published models.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207982 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07982&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0207982

DOI: 10.1371/journal.pone.0207982

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0207982