EconPapers    
Economics at your fingertips  
 

Rapid prediction of yellow tea free amino acids with hyperspectral images

Baohua Yang, Yuan Gao, Hongmin Li, Shengbo Ye, Hongxia He and Shenru Xie

PLOS ONE, 2019, vol. 14, issue 2, 1-17

Abstract: Free amino acids are an important indicator of the freshness of yellow tea. This study investigated a novel procedure for predicting the free amino acid (FAA) concentration of yellow tea. It was developed based on the combined spectral and textural features from hyperspectral images. For the purposes of exploration and comparison, hyperspectral images of yellow tea (150 samples) were captured and analyzed. The raw spectra were preprocessed with Savitzky-Golay (SG) smoothing. To reduce the dimension of spectral data, five feature wavelengths were extracted using the successive projections algorithm (SPA). Five textural features (angular second moment, entropy, contrast, correlation, and homogeneity) were extracted as textural variables from the characteristic grayscale images of the five characteristic wavelengths using the gray-level co-occurrence matrix (GLCM). The FAA content prediction model with different variables was established by a genetic algorithm-support vector regression (GA-SVR) algorithm. The results showed that better prediction results were obtained by combining the feature wavelengths and textural variables. Compared with other data, this prediction result was still very satisfactory in the GA-SVR model, indicating that data fusion was an effective way to enhance hyperspectral imaging ability for the determination of free amino acid values in yellow tea.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210084 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10084&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0210084

DOI: 10.1371/journal.pone.0210084

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0210084