EconPapers    
Economics at your fingertips  
 

Modeling financial interval time series

Liang-Ching Lin and Li-Hsien Sun

PLOS ONE, 2019, vol. 14, issue 2, 1-20

Abstract: In financial economics, a large number of models are developed based on the daily closing price. When using only the daily closing price to model the time series, we may discard valuable intra-daily information, such as maximum and minimum prices. In this study, we propose an interval time series model, including the daily maximum, minimum, and closing prices, and then apply the proposed model to forecast the entire interval. The likelihood function and the corresponding maximum likelihood estimates (MLEs) are obtained by stochastic differential equation and the Girsanov theorem. To capture the heteroscedasticity of volatility, we consider a stochastic volatility model. The efficiency of the proposed estimators is illustrated by a simulation study. Finally, based on real data for S&P 500 index, the proposed method outperforms several alternatives in terms of the accurate forecast.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211709 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11709&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0211709

DOI: 10.1371/journal.pone.0211709

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0211709