Using OpenStreetMap point-of-interest data to model urban change—A feasibility study
Liming Zhang and
Dieter Pfoser
PLOS ONE, 2019, vol. 14, issue 2, 1-34
Abstract:
User-generated content is a valuable resource for capturing all aspects of our environment and lives, and dedicated Volunteered Geographic Information (VGI) efforts such as OpenStreetMap (OSM) have revolutionized spatial data collection. While OSM data is widely used, considerably little attention has been paid to the quality of its Point-of-interest (POI) component. This work studies the accuracy, coverage, and trend worthiness of POI data. We assess the accuracy and coverage using another VGI source that utilizes editorial control. OSM data is compared to Foursquare data by using a combination of label similarity and positional proximity. Using the example of coffee shop POIs in Manhattan we also assess the trend worthiness of OSM data. A series of spatio-temporal statistical models are tested to compare change in the number of coffee shops to home prices in certain areas. This work overall shows that, although not perfect, OSM POI data and specifically its temporal aspect (changeset) can be used to drive urban science research and to study urban change.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212606 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12606&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0212606
DOI: 10.1371/journal.pone.0212606
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().