Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes
Nikolaj Tollenaar and
Peter G M van der Heijden
PLOS ONE, 2019, vol. 14, issue 3, 1-37
Abstract:
In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213245 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13245&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0213245
DOI: 10.1371/journal.pone.0213245
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).