An improved adaptive memetic differential evolution optimization algorithms for data clustering problems
Hossam M J Mustafa,
Masri Ayob,
Mohd Zakree Ahmad Nazri and
Graham Kendall
PLOS ONE, 2019, vol. 14, issue 5, 1-28
Abstract:
The performance of data clustering algorithms is mainly dependent on their ability to balance between the exploration and exploitation of the search process. Although some data clustering algorithms have achieved reasonable quality solutions for some datasets, their performance across real-life datasets could be improved. This paper proposes an adaptive memetic differential evolution optimisation algorithm (AMADE) for addressing data clustering problems. The memetic algorithm (MA) employs an adaptive differential evolution (DE) mutation strategy, which can offer superior mutation performance across many combinatorial and continuous problem domains. By hybridising an adaptive DE mutation operator with the MA, we propose that it can lead to faster convergence and better balance the exploration and exploitation of the search. We would also expect that the performance of AMADE to be better than MA and DE if executed separately. Our experimental results, based on several real-life benchmark datasets, shows that AMADE outperformed other compared clustering algorithms when compared using statistical analysis. We conclude that the hybridisation of MA and the adaptive DE is a suitable approach for addressing data clustering problems and can improve the balance between global exploration and local exploitation of the optimisation algorithm.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216906 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16906&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0216906
DOI: 10.1371/journal.pone.0216906
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().