EconPapers    
Economics at your fingertips  
 

Electron streams in air during magnetic-resonance image-guided radiation therapy

Hyun Joon An, Jung-in Kim and Jong Min Park

PLOS ONE, 2019, vol. 14, issue 5, 1-22

Abstract: To investigate the undesired irradiations outside of the treatment field by electron streams in air (air-electron-stream) during magnetic-resonance image-guided radiation therapy (MR-IGRT). A custom-made support phantom adjusting angles between the beam central axis (CAX) and the phantom surface (termed phantom-angles), were used. Using the ViewRay system, a rectangular parallelepiped phantom placed on the support phantom, was irradiated with field sizes of 6.3 cm × 6.3 cm (FS6.3) and 12.6 cm × 12.6 cm (FS12.6) at gantry angles of 0°, 30°, and 330°, and phantom-angles of 10°, 20°, and 30°. For each beam delivery, the isocenter was located at the center of mass of the phantom and 3 Gy was delivered to the isocenter (prescription dose = 3 Gy). The doses given by the air-electron-streams were measured using the EBT3 films on the panels placed orthogonal to the direction of the magnetic field at distances of 10 and 17 cm from CAX. Two dose distributions per irradiation were measured on the panel facing the phantom surface of the incident beam (front panel) and on the panel facing the phantom surface of the beam exit (end panel). We investigated the doses by the air-electron-streams by calculating the average doses inside the circles drawn around a point of the maximum dose with radii of x cm (DRx) from the dose distributions on the panels (x = 1–5 cm). The largest value of DRx was DR1 (1.64 Gy, 55% of the prescription dose) at 10 cm distance from CAX, with FS12.6, at 30° phantom-angle and 330° gantry angle. The average difference of the DR1 at the end panels (FS12.6) between the calculations and measurements was 1.36 Gy. The average global gamma passing rate with 3%/3 mm on the dose distributions at the end panels (FS12.6) was 40.3%. The calculated dose distributions on both panels were not coincident with the measured dose distributions. The Spearman’s rank correlation coefficients between the projected areas and the DRx values were always higher than 0.75 (all with p

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216965 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16965&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0216965

DOI: 10.1371/journal.pone.0216965

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0216965