Improved Monte Carlo methods for estimating confidence intervals for eleven commonly used health disparity measures
Jaeil Ahn,
Sam Harper,
Mandi Yu,
Eric J Feuer and
Benmei Liu
PLOS ONE, 2019, vol. 14, issue 7, 1-8
Abstract:
Health disparities are commonplace and of broad interest to policy makers, but are also challenging to measure and communicate. The Health Disparity Calculator software (HD*Calc, v1.2.4) offers Monte Carlo simulation (MCS)-based confidence interval (CI) estimation of eleven disparity measures. The MCS approach provides accurate CI estimation, except when data are scarce (e.g., rare cancers). To address sparse data challenges to CI estimation, we propose two solutions: 1) employing the gamma distribution in the MCS and 2) utilizing a zero-inflated Poisson estimate for Poisson sampling in simulation experiments. We evaluate each solution through simulation studies using female breast, female brain, lung, and cervical cancer data from the Surveillance, Epidemiology, and End Results (SEER) program. We compare the coverage probabilities (CPs) of eleven health disparity measures based on simulated datasets. The truncated normal distribution implemented in the MCS with the standard Poisson samples (the default setting of HD*Calc) leads to less-than-optimal coverage probabilities (
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219542 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19542&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0219542
DOI: 10.1371/journal.pone.0219542
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().