A low latency and low power indirect topology for on-chip communication
Usman Ali Gulzari,
Sarzamin Khan,
Muhammad Sajid,
Sheraz Anjum,
Frank Sill Torres,
Hessam Sarjoughian and
Abdullah Gani
PLOS ONE, 2019, vol. 14, issue 10, 1-18
Abstract:
This paper presents the Hybrid Scalable-Minimized-Butterfly-Fat-Tree (H-SMBFT) topology for on-chip communication. Main aspects of this work are the description of the architectural design and the characteristics as well as a comparative analysis against two established indirect topologies namely Butterfly-Fat-Tree (BFT) and Scalable-Minimized-Butterfly-Fat-Tree (SMBFT). Simulation results demonstrate that the proposed topology outperforms its predecessors in terms of performance, area and power dissipation. Specifically, it improves the link interconnectivity between routing levels, such that the number of required links isreduced. This results into reduced router complexity and shortened routing paths between any pair of communicating nodes in the network. Moreover, simulation results under synthetic as well as real-world embedded applications workloads reveal that H-SMBFT can reduce the average latency by up-to35.63% and 17.36% compared to BFT and SMBFT, respectively. In addition, the power dissipation of the network can be reduced by up-to33.82% and 19.45%, while energy consumption can be improved byup-to32.91% and 16.83% compared to BFT and SMBFT, respectively.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222759 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 22759&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0222759
DOI: 10.1371/journal.pone.0222759
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().