Tubes and bubbles topological confinement of YouTube recommendations
Camille Roth,
Antoine Mazières and
Telmo Menezes
PLOS ONE, 2020, vol. 15, issue 4, 1-17
Abstract:
The role of recommendation algorithms in online user confinement is at the heart of a fast-growing literature. Recent empirical studies generally suggest that filter bubbles may principally be observed in the case of explicit recommendation (based on user-declared preferences) rather than implicit recommendation (based on user activity). We focus on YouTube which has become a major online content provider but where confinement has until now been little-studied in a systematic manner. We aim to contribute to the above literature by showing whether recommendation on YouTube exhibits phenomena typical of filter bubbles, tending to lower the diversity of consumed content. Starting from a diverse number of seed videos, we first describe the properties of the sets of suggested videos in order to design a sound exploration protocol able to capture latent recommendation graphs recursively induced by these suggestions. These graphs form the background of potential user navigations along non-personalized recommendations. From there, be it in topological, topical or temporal terms, we show that the landscape of what we call mean-field YouTube recommendations is often prone to confinement dynamics. Moreover, the most confined recommendation graphs i.e., potential bubbles, seem to be organized around sets of videos that garner the highest audience and thus plausibly viewing time.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231703 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31703&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231703
DOI: 10.1371/journal.pone.0231703
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().