EconPapers    
Economics at your fingertips  
 

Identification and selection of optimal reference genes for qPCR-based gene expression analysis in Fucus distichus under various abiotic stresses

Marina Linardić and Siobhan A Braybrook

PLOS ONE, 2021, vol. 16, issue 4, 1-19

Abstract: Quantitative gene expression analysis is an important tool in the scientist’s belt. The identification of evenly expressed reference genes is necessary for accurate quantitative gene expression analysis, whether by traditional RT-PCR (reverse-transcription polymerase chain reaction) or by qRT-PCR (quantitative real-time PCR; qPCR). In the Stramenopiles (the major line of eukaryotes that includes brown algae) there is a noted lack of known reference genes for such studies, largely due to the absence of available molecular tools. Here we present a set of nine reference genes (Elongation Factor 1 alpha (EF1A), Elongation Factor 2 alpha (EF2A), Elongation Factor 1 beta (EF1B), 14-3-3 Protein, Ubiquitin Conjugating Enzyme (UBCE2), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Actin Related Protein Complex (ARP2/3), Ribosomal Protein (40s; S23), and Actin) for the brown alga Fucus distichus. These reference genes were tested on adult sporophytes across six abiotic stress conditions (desiccation, light and temperature modification, hormone addition, pollutant exposure, nutrient addition, and wounding). Suitability of these genes as reference genes was quantitatively evaluated across conditions using standard methods and the majority of the tested genes were evaluated favorably. However, we show that normalization genes should be chosen on a condition-by-condition basis. We provide a recommendation that at least two reference genes be used per experiment, a list of recommended pairs for the conditions tested here, and a procedure for identifying a suitable set for an experimenter’s unique design. With the recent expansion of interest in brown algal biology and accompanied molecular tools development, the variety of experimental conditions tested here makes this study a valuable resource for future work in basic biology and understanding stress responses in the brown algal lineage.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233249 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33249&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0233249

DOI: 10.1371/journal.pone.0233249

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0233249