EconPapers    
Economics at your fingertips  
 

Impact of incentive and selection strength on green technology innovation in Moran process

Runtian Zhang and Jinye Li

PLOS ONE, 2020, vol. 15, issue 6, 1-15

Abstract: Methods of previous researches on green technology innovation will have difficulty in finite population. One solution is the use of stochastic evolutionary game dynamic-Moran process. In this paper we study stochastic dynamic games about green technology innovation with a two-stage free riding problem. Results illustrate the incentive and selection strength play positive roles in promoting participant to be more useful to society, but with threshold effect: too slighted strength makes no effect due to the randomness of the evolution process in finite population. Two-stage free riding problem can be solved with the use of inequality incentives, however, higher inequality can make policy achieves faster but more unstable, so there would be an optimal range. In this paper we provided the key variables of green technology innovation incentive and principles for the environmental regulation policy making. Also reminded that it’s difficult to formulate policies reasonably and make them achieve the expected results.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235516 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35516&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235516

DOI: 10.1371/journal.pone.0235516

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0235516