Biological batch normalisation: How intrinsic plasticity improves learning in deep neural networks
Nolan Peter Shaw,
Tyler Jackson and
Jeff Orchard
PLOS ONE, 2020, vol. 15, issue 9, 1-20
Abstract:
In this work, we present a local intrinsic rule that we developed, dubbed IP, inspired by the Infomax rule. Like Infomax, this rule works by controlling the gain and bias of a neuron to regulate its rate of fire. We discuss the biological plausibility of the IP rule and compare it to batch normalisation. We demonstrate that the IP rule improves learning in deep networks, and provides networks with considerable robustness to increases in synaptic learning rates. We also sample the error gradients during learning and show that the IP rule substantially increases the size of the gradients over the course of learning. This suggests that the IP rule solves the vanishing gradient problem. Supplementary analysis is provided to derive the equilibrium solutions that the neuronal gain and bias converge to using our IP rule. An analysis demonstrates that the IP rule results in neuronal information potential similar to that of Infomax, when tested on a fixed input distribution. We also show that batch normalisation also improves information potential, suggesting that this may be a cause for the efficacy of batch normalisation—an open problem at the time of this writing.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238454 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38454&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0238454
DOI: 10.1371/journal.pone.0238454
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().