EconPapers    
Economics at your fingertips  
 

Automatic clustering method to segment COVID-19 CT images

Mohamed Abd Elaziz, Mohammed A. A. Al-qaness, Esraa Osama Abo Zaid, Songfeng Lu, Rehab Ali Ibrahim and Ahmed A. Ewees

PLOS ONE, 2021, vol. 16, issue 1, 1-13

Abstract: Coronavirus pandemic (COVID-19) has infected more than ten million persons worldwide. Therefore, researchers are trying to address various aspects that may help in diagnosis this pneumonia. Image segmentation is a necessary pr-processing step that implemented in image analysis and classification applications. Therefore, in this study, our goal is to present an efficient image segmentation method for COVID-19 Computed Tomography (CT) images. The proposed image segmentation method depends on improving the density peaks clustering (DPC) using generalized extreme value (GEV) distribution. The DPC is faster than other clustering methods, and it provides more stable results. However, it is difficult to determine the optimal number of clustering centers automatically without visualization. So, GEV is used to determine the suitable threshold value to find the optimal number of clustering centers that lead to improving the segmentation process. The proposed model is applied for a set of twelve COVID-19 CT images. Also, it was compared with traditional k-means and DPC algorithms, and it has better performance using several measures, such as PSNR, SSIM, and Entropy.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244416 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44416&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0244416

DOI: 10.1371/journal.pone.0244416

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0244416