Ranking-based hierarchical random mutation in differential evolution
Xuxu Zhong,
Meijun Duan and
Peng Cheng
PLOS ONE, 2021, vol. 16, issue 2, 1-23
Abstract:
In order to improve the performance of differential evolution (DE), this paper proposes a ranking-based hierarchical random mutation in differential evolution (abbreviated as RHRMDE), in which two improvements are presented. First, RHRMDE introduces a hierarchical random mutation mechanism to apply the classic “DE/rand/1” and its variant on the non-inferior and inferior group determined by the fitness value. The non-inferior group employs the traditional mutation operator “DE/rand/1” with global and random characteristics, which increases the global exploration ability and population diversity. The inferior group uses the improved mutation operator “DE/rand/1” with elite and random characteristics, which enhances the local exploitation ability and convergence speed. Second, the control parameter adaptation of RHRMDE not only considers the complexity differences of various problems but also takes individual differences into account. The proposed RHRMDE is compared with five DE variants and five non-DE algorithms on 32 universal benchmark functions, and the results show that the RHRMDE is superior over the compared algorithms.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245887 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 45887&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0245887
DOI: 10.1371/journal.pone.0245887
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().