Forearm muscles fatigue induced by repetitive braking on a motorcycle is best discriminated by specific kinetic parameters
Michel Marina,
Priscila Torrado,
Stéphane Baudry and
Jacques Duchateau
PLOS ONE, 2021, vol. 16, issue 2, 1-19
Abstract:
Maneuvering a motorcycle in racing conditions or for prolonged time is sufficiently demanding that on many occasions forearm muscles reach a state of functional failure when riders cannot properly brake or operate the throttle. This study intends to discriminate which ones of the several dynamometric parameters used in the literature to characterize the Force-time (F-t) curve during voluntary contractions are more sensitive to neuromuscular fatigue in simulated motorcycle-riding conditions. Thirty-three adults performed an intermittent fatiguing protocol (IFP) that simulated the brake-pulling and throttle-twisting actions, by using a hydraulic system equipped with a pressure sensor. Sixty pressure-time (P-t) curve parameters, including the rate of pressure development (RPD) and area under the curve were measured to characterize the time course of the braking maximal voluntary contraction (MVC). Two types of variables were used to analyze the P-t curve: 1) Times interval (from 0 to 30-50-100-500-1000 and 2000 ms); 2) Percentages of MVC (10-30-60-90%MVC). Overall significant (p ≤ 0.05) fatigue-related declines were observed only at time intervals longer than 100 ms and contraction intensities higher than 30%MVC. Strong and significant linear declines (p
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246242 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 46242&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0246242
DOI: 10.1371/journal.pone.0246242
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().