Unsupervised learning of Swiss population spatial distribution
Mikhail Kanevski
PLOS ONE, 2021, vol. 16, issue 2, 1-24
Abstract:
The paper deals with the analysis of spatial distribution of Swiss population using fractal concepts and unsupervised learning algorithms. The research methodology is based on the development of a high dimensional feature space by calculating local growth curves, widely used in fractal dimension estimation and on the application of clustering algorithms in order to reveal the patterns of spatial population distribution. The notion “unsupervised” also means, that only some general criteria—density, dimensionality, homogeneity, are used to construct an input feature space, without adding any supervised/expert knowledge. The approach is very powerful and provides a comprehensive local information about density and homogeneity/fractality of spatially distributed point patterns.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246529 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 46529&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0246529
DOI: 10.1371/journal.pone.0246529
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().